Interneuronal macroscopic quantum coherence in the brain cortex! The role of the intrasynaptic adhesive proteins β-neurexin and neuroligin-1

نویسنده

  • Danko Dimchev
چکیده

There are many blank areas in understanding the brain dynamics and especially how it gives rise to consciousness. Quantum mechanics is believed to be capable of explaining the enigma of conscious experience, however till now there is not good enough model considering both the data from clinical neurology and having some explanatory power! In this paper is presented a novel model in defence of macroscopic quantum events within and between neural cells. The β-neurexin-neuroligin-1 link is claimed to be not just the core of the central neural synapse, instead it is a device mediating entanglement between the cytoskeletons of the cortical neurons. Thus a macroscopic quantum state can extend throughout large brain cortical areas and the subsequent collapse of the wavefunction could affect simultaneously the subneuronal events in millions of neurons. The β−neurexin-neuroligin-1 complex also controls the process of exocytosis and provides an interesting and simple mechanism for retrograde signalling during learning-dependent changes in synaptic connectivity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The β-neurexin-neuroligin-1 interneuronal intrasynaptic adhesion is essential for quantum brain dynamics

There are many blank areas in understanding the brain dynamics and especially how it gives rise to consciousness. Quantum mechanics is believed to be capable of explaining the enigma of conscious experience, however till now there is not good enough model considering both the data from clinical neurology and having some explanatory power! In this paper is presented a novel model in defence of m...

متن کامل

The synaptic proteins β-neurexin and neuroligin synergize with extracellular matrix-binding vascular endothelial growth factor a during zebrafish vascular development.

OBJECTIVE The goal of this study was to determine the in vivo functions of the synaptic proteins neurexins and neuroligins in embryonic vascular system development using zebrafish as animal model. METHODS AND RESULTS In the present study, we show that the knockdown of the α-form of neurexin 1a induces balance defects and reduced locomotory activity, whereas β-neurexin 1a and neuroligin 1 morp...

متن کامل

Presenilin/γ-Secretase Regulates Neurexin Processing at Synapses

Neurexins are a large family of neuronal plasma membrane proteins, which function as trans-synaptic receptors during synaptic differentiation. The binding of presynaptic neurexins to postsynaptic partners, such as neuroligins, has been proposed to participate in a signaling pathway that regulates synapse formation/stabilization. The identification of mutations in neurexin genes associated with ...

متن کامل

Structures of Neuroligin-1 and the Neuroligin-1/Neurexin-1β Complex Reveal Specific Protein-Protein and Protein-Ca2+ Interactions

Neurexins and neuroligins provide trans-synaptic connectivity by the Ca2+-dependent interaction of their alternatively spliced extracellular domains. Neuroligins specify synapses in an activity-dependent manner, presumably by binding to neurexins. Here, we present the crystal structures of neuroligin-1 in isolation and in complex with neurexin-1 beta. Neuroligin-1 forms a constitutive dimer, an...

متن کامل

Sensory Regulation of Neuroligins and Neurexin I in the Honeybee Brain

BACKGROUND Neurexins and neuroligins, which have recently been associated with neurological disorders such as autism in humans, are highly conserved adhesive proteins found on synaptic membranes of neurons. These binding partners produce a trans-synaptic bridge that facilitates maturation and specification of synapses. It is believed that there exists an optimal spatio-temporal code of neurexin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003